20 research outputs found

    Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model.

    Get PDF
    Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1\u27s biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application

    Ca2+ Sensor Synaptotagmin-1 Mediates Exocytosis in Mammalian Photoreceptors

    Get PDF
    To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission

    Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening.

    Get PDF
    Marker assisted speed congenics technique is commonly used to facilitate backcrossing of mouse strains in nearly half the time it normally takes otherwise. Traditionally, the technique is performed by analyzing PCR amplified regions of simple sequence length polymorphism (SSLP) markers between the recipient and donor strains: offspring with the highest number of markers showing the recipient genome across all chromosomes is chosen for the next generation. Although there are well-defined panels of SSLP makers established between certain pairs of mice strains, they are incomplete for most strains. The availability of well-established marker sets for speed congenic screens would enable the scientific community to transfer mutations across strain backgrounds. In this study, we tested the suitability of over 400 SSLP marker sets among 10 mouse strains commonly used for generating genetically engineered models. The panel of markers presented here can readily identify the specified strains and will be quite useful in marker assisted speed congenic screens. Moreover, unlike newer single nucleotide polymorphism (SNP) array methods which require sophisticated equipment, the SSLP markers panel described here only uses PCR and agarose gel electrophoresis of amplified products; therefore it can be performed in most research laboratories

    Human-like NSG Mouse Glycoproteins Sialylation Pattern Changes the Phenotype of Human Lymphocytes and Sensitivity to HIV-1 Infection

    Get PDF
    BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins\u27 chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2RÎł CONCLUSION: NSG-cma

    Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins

    Get PDF
    Background Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Results Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5–100% of the resulting live offspring. Conclusions Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources

    CD4+ Effector T cells Accelerate Alzheimer\u27s Disease in Mice

    Get PDF
    BACKGROUND: Alzheimer\u27s disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aβ) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aβ) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aβ-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aβ T cell epitope loaded haplotype-matched major histocompatibility complex II IA RESULTS: The propagated Aβ-Th1 and Aβ-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aβ reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aβ-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aβ reactive Tregs

    Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: A multi-center evaluation

    Get PDF
    Background CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as “two-donor floxing” method). Results We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. Conclusion We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.This work was supported by the National Collaborative Research Infrastructure (NCRIS) via the Australian Phenomics Network (APN) (to Gaetan Burgio and Paul Thomas), by an Institutional Development Award (PI: Shelley Smith) P20GM103471 (to CBG, RMQ, DWH, JDE, and RR), by NIGMS 1P30GM110768-01 and P30CA036727 (as part of support to University of Nebraska Mouse Genome Engineering and DNA Sequencing Cores), the British Heart Foundation FS12-57, FS12/57/29717, and CH/13/2/30154 and the program grant RG/15/12/31616 (to Kathryn Hentges and Bernard Keavney), the Wellcome Trust grants 107849/Z/ 15/Z, 097820/Z11/B, and 105610/Z/14/Z, the Medical Research Council MR/ N029992/1 (to DB and CBL), the National BioResource Project of Ministry of Education, Culture, Sports, Science and Technology/Japan Agency for Medical Research and Development (MEXT/AMED), Japan, the Canadian Institutes of Health Research MOP#142452 (MCB and LJM). LJM is a member of the Research Centre of the McGill University Health Centre which is supported in part by FQRS. Dr. William Thompson was supported by the Indiana Clinical and Translational Sciences Institute, funded in part by grant #UL1 TR001108 from the National Institute of Health (NIH), National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. KC Kent Lloyd is supported by the NIH (UM1OD023221), and work contributed by staff from the UC Davis Mouse Biology Program (MBP) is supported by a grant from the American College of Laboratory Animal Medicine. The work contributed from Xiande Liu, Chad Smith, Eric Jonasch, Xuesong Zhang, and Jan ParkerThornburg is supported by the NIH under the award number P30CA16672 (XL, CS, EJ, XZ, JPT) and R50CA211121 (JPT). Joseph Miano is supported by the NIH under the award number HL138987. R Sedlacek was supported by LM2015040 (Czech Centre for Phenogenomics), CZ.1.05/1.1.00/02.0109 (BIOCEV), and CZ.1.05/2.1.00/19.0395 by the Ministry of Education, Youth and Sports (MEYS) and by Academy of Sciences of the Czech Republic (RVO 68378050). David Ray was supported by a Wellcome Trust Investigator (107849/Z/15/Z) and the Medical Research Council (MR/P011853/1 and MR/P023576/) grants. Andrew Loudon was supported by a Wellcome Trust Investigator (107849/Z/15/Z), Biotechnology and Biological Sciences Research Council (BB/N015584/1), Medical Research Council (MR/P023576/1). The work contributed from Gloria Lopez-Castejon is supported by the Wellcome Trust (104192/Z/14/Z) and the Royal Society. Pilar Alcaide was supported by the NIH (HL 123658). The work contributed from Surinder K. Batra is supported by the NIH under the award number P01 CA217798

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF
    corecore